TOPOLOGY MIDTERM EXAMINATION

You can quote any result proved in class (unless you are being asked to prove it). Total marks: 35

- (1) Let \mathbb{R}^{ω} be the countably infinite product of \mathbb{R} with itself, and let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of sequences which are eventually zero, that is, $(a_i)_{i=1}^{\infty}$ such that only finitely many a_i 's are nonzero. Determine the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} with respect to the box topology, the uniform topology, and the product topology on \mathbb{R}^{ω} . (3 x 3 = 9 marks)
- (2) Consider \mathbb{Z} as a normal subgroup of the additive group \mathbb{R} of real numbers. Prove that the group \mathbb{R}/\mathbb{Z} is isomorphic to the group S^1 as topological groups. (5 marks)
- (3) Give an example (with details) of a connected topological space which has infinitely many path connected components. If X is a locally path connected topological space and U is a connected open subset of X, then prove that U is path connected. (3+3=6 marks)
- (4) Let I_o^2 be the oredered square. Is I_o^2 locally path connected? locally connected? compact? (3 x 3 = 9 marks)
- (5) State and prove the Lebesgue number lemma. (2+4 = 6 marks)

Date: February 25, 2015.